Snip
|
To verify cluster separation in high-dimensional data, a...
|
---|
Categories |
|
---|
For Snip |
loading snip actions ... |
---|---|
For Page |
loading url actions ... |
HTML |
<div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 146.782px; top: 184.249px; transform: scale(1.03207, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="577.5274705449928">To verify cluster separation in high-dimensional data, analysts often reduce the data with a dimension reduction (DR)</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 196.869px; transform: scale(1.02181, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295251">technique, and then visualize it with 2D Scatterplots, interactive 3D Scatterplots, or Scatterplot Matrices (SPLOMs). With the goal</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 209.488px; transform: scale(1.03083, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295253">of providing guidance between these visual encoding choices, we conducted an empirical data study in which two human coders</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 222.108px; transform: scale(1.03481, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295253">manually inspected a broad set of 816 scatterplots derived from 75 datasets, 4 DR techniques, and the 3 previously mentioned</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 234.727px; transform: scale(0.997796, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295253">scatterplot techniques. Each coder scored all color-coded classes in each scatterplot in terms of their separability from other classes.</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 247.347px; transform: scale(1.00461, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295251">We analyze the resulting quantitative data with a heatmap approach, and qualitatively discuss interesting scatterplot examples. Our</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 259.965px; transform: scale(1.03381, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295253">findings reveal that 2D scatterplots are often ‘good enough’, that is, neither SPLOM nor interactive 3D adds notably more cluster</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 272.585px; transform: scale(1.03787, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295252">separability with the chosen DR technique. If 2D is not good enough, the most promising approach is to use an alternative DR</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 285.204px; transform: scale(1.00904, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295251">technique in 2D. Beyond that, SPLOM occasionally adds additional value, and interactive 3D rarely helps but often hurts in terms of</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 297.824px; transform: scale(1.00053, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="620.6292318295251">poorer class separation and usability. We summarize these results as a workflow model and implications for design. Our results offer</div><div dir="ltr" style="font-size: 10.6267px; font-family: sans-serif; left: 103.68px; top: 310.443px; transform: scale(1.00006, 1); transform-origin: 0% 0% 0px;" data-font-name="g_font_768_0" data-canvas-width="262.9993811713254">guidance to analysts during the DR exploration process.</div> |
---|